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By the antiplane strain we understand the state of stress in a cylindri- 
cal body of infinite height, produced by a loading acting along the 
generators of the cylinder and constant along these generators. Suppose 
that two cylindrical bodies one of which is perfectly rigid, are in con- 
tact so that on the surface of contact the adhesion conditions take place. 
The perfectly rigid body subjected to certain forces is called the punch, 
and the problem of determination of stresses and strains in the elastic- 
plastic body obeying the Prandtl diagram, is called the elastic-plastic 
contact problem. In [l] the elastic-plastic problem for antiplsne strain 
was investigated, assuming that on the boundary of the body tractions 
were prescribed; consequently, in the plastic region the problem was 
statically determinate. The elastic-plastic contact problem is statically 
indeterminate. 

L.A. Galin formulated the problem of deter~io8tion of the contour of 
the body (or its sections) so that the plastic regions are developed at 
once on the whole contour (or its sections). Below we examine a number of 
elastic-plastic contact problems in this inverse formulation (Sections 
2,3). In Section 4 we present the solution of the problem considered in 
[l], for the case when the plastic region is developed at once on 8 
section of the boundary, degenerating into a line on the boundary of the 
body. 

1. Fundamental relations. 1. The fields of displacement and stress in 
the considered body satisfy the relations 

Here u, v. w are the components of the displacement vector, 
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are the components of the stress tensor. x,y,z 
(the z-axis Is parallel to the generator). 

In the plastic region we have the following yield condition 

IrI=k T = rxz + iryz = keie (1.2) 

where k is the plasticity constant. 

Along the straight line y = -x cot 8 + C, 
8 = const coinciding with the slip line and 
orthogonal to vector r at all points, we 
have the relation [ll 

b) 
w = const 

On the boundary between the elastic and 
plastic regions we assume the continuity of 
the stresses and displacements. 

Fig. 1. 

In the elastic region the stresses and the displacement can be repre- 
sented [21 by one analytic complex variable function (u is the shear 
modulus) 

w = Re f (z), I 
T = T,, + iTyz = Pf (4 (z = 5 + iy) (1.4) 

2. Suppose that the plastic region has a non-zero area and the slip 
lines emanating from the contour of the body on which the conjunction 
condition with the punch IO = const is given, intersect the boundary be- 
tween the elastic and plastic regions on a section L. Then it follows 
from formulas (1.3) and (1.4) that on section L the tangential component 
of the stress vector t should vanish, i.e. the slip lines should be tan- 
gent to the contour L. If the contour of the body is a convex smooth arc 
it is impossible to construct a convex smooth contour L resting on this 
arc and possessing the above property. Apparently in this case the solu- 

tion In the plastic region is discontinuous. 

2. Inverse contact elastic-plastic problem. Suppose that the contour 
of the body consists of known sections of straight line, which are free 
of tractions, and curved lines constituting the surfaces of contact with 
the punches. It Is required to determine the curved arcs by means of the 
condition that the plastic regions rest on the latter. Let Ak, Bk, Ci be 
the apexes of the polygon constituting the contour of the body (see Fig.1); 
A&, 3& are points of the curved arcs; some of them may be at infinity: 

i = 1, . . . , n, k = 1. . . . , tn. The equations of the rectilinear sections 

which are free of tractions have the form 

Y = z tul Bj $- dj (i=l....,m_tn) 
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where ‘j is the angle between the jth line and the x-axis. The condition 
of absence of the loading on the jth rectilinear portion of the boundary 
can, by means of representation (1.4), be written in the form 

Re [(tm Oj - i) f’ (z)] = 0 (2.1) 

On the unknown part of the contour of the body the adhesion condition 
(1.3) and condition (1.2) should be satisfied; on the basis of formula 

(1.4) the latter conditions can be written in the form 

Re / (z) = h,, If’WI=kllL (2.2) 

where hk is the constant displacement of the kth punch. 

Let us now pass to the parametric plane of the complex variable i by 
means of the conformal mapping z = o(c), in such a way that points Ci, 

Ak, Bk of plane z correspond to the points ci, uk, bk of the real axis 
on plane 5. and the elastic region corresponds to the upper semi-plane 
Im 5 > 0 (Fig. 1). Introduce the notation f[~(<)l = F(c). For the deter- 
mination of the functions o(c) and F(c) analytic in the upper semi-plane 
Im 5 > 0, we obtain in view of (2. l), (2.2) and the equations of the 
straight lines the boundary value problem 

I I F’(5) k on L 

m=CL ’ 1 
=O 0niU (2.3) 

Re F (5) = h, on L, Re [(UU Oi + i) o (<)I = - dj on M (2.4) 

Here L are points of the real axis situated between uk and bk, while 
M are the remaining points of the real axis. 

The boundary value problem (2.3) belongs to the type of problems in- 
vestigated in [I]; consequently, F’(t)/o’(<) is determined independently 
of o(c). Differentiating the boundary condition (2.4) and making use of 
the solution of the boundary value problem (2.3). to determine o’(c), we 
arrive at the Hilbert problem for the upper semi-plane; the complete 
solution of this problem is presented in the monographs of Yuskhelishvili 
[31 and Gakhov L-41. In solviul: these problems the conditions of epul- 
librium are employed as in the plane problem of the elasticity theory 
[51. In calculating the number of zeros necessary for the solution of 
the boundary value problem (2.3). it is convenient to use the hydrodynamic 
analogy [6,11. 

2. As an example consider the following problem. Suppose that the con- 
tour of the body consists of the radii arg z = f 8, free of traction and 
an unknown curvilinear arc rigidly connected with the punch which is sub- 
jected to force P. 
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In this case the curved arc is a circle of radius 

1 

R=2hBo 

and the function f(t) is 

kR 
f (z) = -- In 2 + c 

P 

C is an unknown constant. 

(25) 

3. Inverse elastic-plastic contact problem. Suppose that a rigid punch 

bounded by known sections of straight lines and by curved arcs is com- 

pletely immersed in an infinite elastic-plastic body. The plastic region 

rests on the curved 816s which are to be determined. On the rectilinear 

sections of the boundary of the body we have in view of representation 

(1.4) the condition 

where h is a constant. 

We use the notations of the preceding section. On the parametric Plane 

5 for the determination of functions L = o(c) and F(l) = f[o(<)l we have 

Re f (2) = h (3.1) 

as in Section 2 the boundary value problem 

Re P(Q=h on L+M (3.2) 

on L, Re (l---i ~~~~~ 
i 

=O 0nM (3.3) 

As 8n example consider the problem when the whole boundary of the 

rigid punch subjected to force P is known. In this example the boundary 

of the punch is the circle of radius 

P 
R=2nk 

and the function f(z) is 

f (2) = &In z + C (C = con&) 

(3.4) 

(3.5) 

4. Elastic-plastic problem for the exterior of a contoar coasistiar 
of sections of straight asd curved lines, free of traction, in the case 
when the plastic region degenerates into curved boundary comes. 1. We 
use the notations of [l, Section 4. For the degenerate problem con- 

sidered. the boundary value problem for the determination of o’(i) is 

distinct from the corresponding boundary value problem in the non- 

degenerate case El] 

arg 0’ (6) = $ + e on L, Re [(t~0~+i)0’(Q]=OonM (4.1) 
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Here the rumion 0 = - arg F(c) is known from the solution of another 
boundary value problem [l, Section 4, (4.3)1. 

2. Consider a somewhat more general nonlinear boundary value problem: 
it is required to determine a function f(5) analytic in the upper seai- 
plane Im 5 > 0 in accordance with the condition on the real axis t 

aw f (4 = a (t) U E G, Re [a(t)-ib(t)f(t)]=O (a+ib#O, tEM) (4.2) 

Here a(t), b(t), a(t) are almost everywhere continuous functions which 
satisfy the Holder condition in the continuity intervals. L and M are 
sections of the real axis. 

Let us construct the canonical function X(c) for the boundary value 
problem (4.2) in exactly the same way as in [l. formulas (3.2). (3.3)1. 
Introduce the piecewise analytic function G(5) 

o,c) = 

{ 

f(Q/-V+(f) as lm 5>9 

f (t) / x- (5) as Irnc < 0 

For the function G(c), analytic in the exterior of 
axis, we obtain from the boundary condition (4.2) the 
Riemann boundary value problem [3,4] 

al+ (t) = e2ia (0 CD- tt) (t=L) 

(4.3) 

cuts L of the real 
homogeneous 1 inear 

(4.4) 

be 

1. 

2. 

3. 

4. 

5. 

Note. The solution of the problem in the title of the section can also 
derived by using the hydrodynamic analogy. 
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